
 1 

Data Warehouse Design Methods Review for the 
Healthcare Domain 

Christina Khnaisser 1, Luc Lavoie 1, Hassan Diab 2, and Jean-François Éthier 2,3,4 

1 Département d’informatique, Université de Sherbrooke, Sherbrooke, Canada 
{christina.khnaisser, luc.lavoie}@usherbrooke.ca 

2 Centre intégré universitaire de santé et de service sociaux de l’Estrie - Centre hospitalier de 
Sherbrooke, Sherbrooke, Canada 

hdiab.chus@ssss.gouv.qc.ca 
3 Département de médecine, Université de Sherbrooke, Sherbrooke, Canada 

4 INSERM UMR 1138 team 22 Centre de Recherche des Cordeliers, Université Paris Descartes 
- Sorbonne Paris Cité 
ethierj@gmail.com 

Abstract. This paper presents current research trends and ongoing challenges in 
data warehouse design methods. In secondary data use context, traditional data 
warehouse design methods don’t address many of today’s challenges; 
particularly in the healthcare domain were semantics plays an essential role to 
achieve an effective and implementable heterogeneous data integration while 
satisfying core requirements. Forty papers were selected based on seven core 
requirements: data integrity, sound temporal schema design, query 
expressiveness, heterogeneous data integration, knowledge/source evolution 
integration, traceability and guided automation. Proposed methods were 
compared based on twenty-two comparison criteria. Analysis of the results 
shows important trends and challenges, among them (1) a growing number of 
methods unify knowledge with source structure to obtain a well-defined data 
warehouse schema built on semantic integration; (2) none of the published 
methods cover all the core requirements as a whole and (3) their potential in 
real world is not demonstrated yet. 

Keywords: Data warehouse design, Clinical data warehouse, Secondary data 
use, Medical informatics, Bioinformatics. 

1 Introduction 

With the development of multiple systems and tools over the last decades, the 
healthcare domain now relies heavily on data consumption for the provision of care to 
patients in multiple contexts. Electronic health records (EHR) play an essential role 
and the importance of this field has been recognized by initiatives like 
Horizon 2020 [17] in Europe and Meaningful use [54] in the United States where 
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substantial resources have been invested to foster the uptake of existing methods and 
to stimulate innovation focusing on quality of care, patient safety and cost reduction. 

Similar challenges face the region of Estrie, in the province of Quebec, Canada. It 
provides healthcare to a population of over 500 000 citizens. It includes a tertiary 
university care center, four local hospitals as well as multiple primary care and 
specialist clinics, each with a different, independent local EHR system. In order to 
address data fragmentation on its territory, the region launched a project for the 
creation of a platform to unify data and to facilitate linkage of its data with external 
sources like provincial registries. 
Large volumes of heavily fragmented healthcare domain (HD) data are generated 
every day from several healthcare institutions using different knowledge models and 
terminologies for the same episode of care. Part of this situation can be explained by 
the fact that patients will see different care providers in various independent 
organizations (e.g. primary clinics, specialist clinics, hospitals) for the same problem. 
Moreover, different care processes mandate different requirements specific to the 
specialty and context (e.g. acute care in hospital vs. chronic care by the treating 
physician in clinic) resulting in heterogeneous data. 

Fragmentation must thus be resolved along at least three axes: location, time, and 
function. The net result is that it is very difficult to have a unified and complete view 
of a patient's clinical state and history. While each setting may have a very efficient 
system from a local perspective, not having a complete picture of a patient creates 
difficulties in providing optimal care, conducting efficient research and managing 
resources. A data warehouse (DW) is needed to uniformly integrate heterogeneous 
data from hundreds of independent sources with minimal human resources. More 
specifically, we are searching for a comprehensive, largely automated and tested 
design method that meets the requirements needed for a clinical DW. This DWD 
method must cover the initial schema creation process (which includes knowledge 
representation, source representation, conceptual design, logical design and physical 
design), the Knowledge-Requirements-Source (KRS) mapping process, the Extract-
Transform-Load (ETL) generation process, and the DW evolution processes. Given 
the large number of sources, a significant part of the processes must be automated 
with or without parameterization and guidance. We will then conduct case studies at 
different scales, from pedagogical examples to realistic tests before choosing the most 
suitable DWD method for our project. 

Data warehouses have been previously used to assemble and present operational 
data. While the term is used to represent different structures in the literature, the 
seminal definition published by Inmon [27] is: “a subject-oriented, integrated, time 
variant and non-volatile collection of data in support of management decisions”. It is 
usually built and maintained away from operational systems. While some aspects of 
this definition are still debated, it gives a good overview. It is worth noting here the 
emphasis on “management decisions”. DW has been used successfully in many fields 
to facilitate decision-making based on data originally collected during and for 
business operations. Nonetheless, a fully integrated clinical DW will need to satisfy 
not only management requirements, but also clinical care and research needs. Three 
major aspects underpin such needs: clinical data is tightly coupled and requires 
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contextual information along multiples axes to fully define its semantics; temporal 
relations span a long period from birth to death with significant uncertainty around 
temporal data, resulting in complex temporal operations; paradigms for data analysis 
and query design will evolve rapidly through the life of the DW as new knowledge 
emerges and so cannot be fully pre-defined. Clinical research also comes with special 
needs: some request must be formulated from different knowledge models and the 
resulting information then compared. All these characteristics give the “subject-
oriented” qualification a rather large scope. Finally, the complexity inherent to these 
three aspects is compounded by data fragmentation as discussed above and so the 
need to host data from multiple sources in the DW keeping track of the original 
sources used to produce any synthesized information. 

Many DW issues in the HD can be found in other domains. Some of them have 
been deeply investigated in the DW literature although many proposed solutions are 
hardly implemented in commercial DW platform. Besides, many issues have been 
studied independently. Possible incompatibilities or negative interactions between 
various solutions can then be present. Previous surveys [11, 16, 22, 29, 62, 69, 81] do 
not clearly identify the best methods that suits HD and some of the comparison 
criteria used are not well-documented. Furthermore, none of the surveys compare 
complete methods in the context of a real-world implementation. We took this 
opportunity to review the scientific literature in order to identify the relevant methods 
in data warehouse design (DWD). While some end products like I2B2 [57] exist, it is 
fundamental to first examine the design methods themselves as they will have 
significant implications in terms of functionality and limitations of the resulting 
systems. Therefore, in this paper we focus on comprehensive and integrated DWD 
methods that can be practically implemented in the HD.  

As a first step in our research, we reviewed the published methods covering DWD. 
We then created a list of requirements needed by the creation process of a DW that 
would address the needs of clinical care providers, researchers and decision makers 
(end-users). We then reviewed the relevant literature in regards to these requirements 
and report our findings here. 

The paper is organized as follows: section 2 describes the methodology used to 
select and compare papers. Section 3 presents interesting points from the evaluation 
results. Section 4 discusses trends and remaining challenges. Finally, section 5 
concludes with open questions and potential research avenues. 

2 Study methodology 

The aim of this study is to help identify current DWD methods and ongoing 
challenges as applicable to the HD. Seven requirements have been defined from 
clinical data characteristics (data integrity, sound temporal schema design, query 
expressiveness, heterogeneous data integration, knowledge and source evolution 
integration, traceability and guided automation) and used to evaluate methods by 
mapping criteria with requirements that allows identifying methods trends and 
unresolved requirements. Although none of these requirements are unique to HD, 
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they must be fully satisfied together in order to give the intended services to the HD 
applications. 

2.1 Clinical data characteristics 

Health care applications range from processing of very low level of data objects (e.g. 
mass and length) to very higher level of data objects (e.g. patient behavior, organism). 
Finally, health care data must be identified in time with multiple degrees of accuracy. 
Among others, these characteristics raise inevitable special issues and fundamental 
differences in comparison with many other domain data [76]. 

A clinical DW must contend with three important characteristics of clinical data 
and its use in the context of secondary analysis of operational data. Firstly, clinical 
data is tightly coupled in nature and highly dependent on contextual information in 
order to fully derive its semantics. For example, while “diagnosis” may seem like a 
straightforward concept, many aspects can, and need to be taken into account to fully 
understand the nature of a diagnostic code present in a database. Is it: a diagnosis 
given when a patient was first admitted to the hospital (so it might change as more 
information becomes available), a discharge (final) diagnosis or a diagnosis entered to 
justify an investigation? Is it a diagnosis made by a medical student, a resident or an 
attending physician? Is it a diagnosis for the patient at hand or a diagnosis of one of 
his family members? Is it an active diagnosis (the patient has a pneumonia), a past 
diagnosis that is now resolved (the patient had pneumonia 2 years ago), or a diagnosis 
that was first identified in the past but that is chronic (the patient was first diagnosed 
with diabetes 10 years ago)? Etc. Many other similar aspects of clinical data include 
the same level of complexity. 

Secondly, as illustrated with the pneumonia/diabetes example above, temporality is 
a significant challenge with medical data. It covers the entire life of an individual. A 
bacterial infection at the age of three can have an impact on a heart valve disease 
identified at the age of fifty-five. There is also substantial uncertainty surrounding a 
significant part of temporal data. It is common to have a patient report that she or he 
has had diabetes for “more than ten years” (when in reality, the first diagnosis was 12 
years ago but the disease has been present for 16 years). Querying and managing such 
data is challenging. This is compounded by the concept of “episode of care”. For 
example, if a patient suffers from a major depression episode, she or he will likely see 
a physician multiple times for that episode. Clinical data will then show multiple 
entries for “major depression” during that time. Nevertheless, it is really only one 
episode. Now let’s consider that the episode is resolved, but two years later, the 
patient has another episode and seeks medical attention again. Medical data will show 
again a “major depression” entry. It is very challenging, using only EHR data, to 
reconstruct the timeline for this patient and to decipher how many episodes are 
represented. Did the patient seek care as a follow-up for the previous episode that was 
never fully gone or is it a completely new episode? This is just one of the simpler 
situations. When intertwined with medication timing, investigations (process and 
results) and other care events, handling of temporality becomes quite complex. 



 5 

Thirdly, the nature of data and its use for clinical care and research bring specific 
demands. As opposed to some other domains where most of the requirements can be 
predefined with users and then implemented, clinical DW must be flexible and 
support prospective analysis along axes that evolve rapidly as new knowledge arises. 
Knowledge is in constant evolution and data generated a few years ago will need to 
be re-analyzed based on new paradigms. 

2.2 Method requirements 

From these characteristics and existing requirements for management activities, we 
can derive a list of requirements a clinical DWD method must satisfy:  
R1 - Data integrity. The method must preserve (all available) integrity constraints to 
ensure data quality and correctness [68]. Data in the DW will be used to generate 
different kinds of reports. Results must be correct and reliable to help different end-
users (e.g. managers, cardiologists or researchers). Data needs to be stored in a neutral 
way as not to hinder use in one context or another. 
R2 - Sound temporal schema design. Information variation over time is crucial for 
most analysis purposes. Having a well-defined temporal schema ensures correct 
temporal semantic and temporal constraint management. The final DW schema must 
be based on a sound, comprehensive and formalized temporal model to improve 
expressiveness and interoperability (like [10] and [13]). 
R3 - Query expressiveness. The final DW schema must simplify the expression of 
queries, especially temporal ones. This may be reached by automatic generation of 
views specific to a target problem class expressed in terms of its contributing 
knowledge elements. It must also be possible to define operators specific to the 
problem class to facilitate data manipulation (like [74] for OLAP querying granular 
temporal trends). 
R4 - Heterogeneous data integration. The method must ensure heterogeneous 
integration of data extracted from multiple sources in a context of high fragmentation. 
See [3] and [49] for interesting definitions and propositions. 
R5A - Knowledge evolution integration. The method must provide mechanisms to 
minimize errors and human resources when integrating knowledge changes. 
Knowledge is in constant evolution and the DW must cope with it, while maintaining 
earlier knowledge interpretations and preserving coherent data, correctly represented. 
R5B - Source evolution integration. The method must cope with new sources 
integration and structural changes in existing ones with minimal impact on the DW 
and no impact on the end-user view of the DW (other than the availability of new data 
and its supporting structure). See [72] for interesting propositions. 
R6 – Traceability. The method must keep track of changes in knowledge models, 
source availability, source structure, schema structure, and designer choices along the 
DW life cycle. Using mechanisms to coordinate all DWD phases is essential [11]. 
Traceability helps to assess the impact of structural changes and improve reusability 
and maintainability [48]. 



 

6 

R7 – Guided automation. To account for the characteristics of clinical data and its 
fragmentation, DWD must support some degree of automation. The resulting DW 
scale inevitably calls for automated tools to minimize the resources needed. However, 
human involvement also remains necessary to handle ambiguous situations. Guided 
automation is a trade-off, balancing automation and human judgment while 
facilitating traceability efforts and minimizing errors. 

2.3 Comparison criteria 

Twenty-two criteria are defined to compare DWD methods and evaluate the 
requirements. Some criteria introduced by [83] were extended, including: automation, 
design approach, requirement and source representation, source analysis, algorithm, 
conceptual data model, logical data model, physical data model and used tools. Other 
criteria were added to support requirements assessment [34]. 
Design Approach (D. App.). Methods are classified within three design approaches 
[69]: a source-driven approach (also named data-driven, supply-driven, bottom-up) 
starts from data sources in order to derive the DW schema, a requirement-driven 
approach (also named demand-driven, goal-driven, top-down) starts from user 
requirements, and a hybrid approach (also named mixed approach) combines both 
approaches. We can distinguish a fourth approach that we named knowledge-driven 
approach that focus on domain knowledge to identify relevant concepts to structure 
and design the DW schema. We can thereby extend the hybrid approach definition as 
combining requirements and sources (R-S), knowledge and sources (K-S) or 
requirement, knowledge and source (R-K-S). 
Process (P-CRE, P-MAP, P-ETL, P-KEV, P-KEV, P-SEV). DWD life cycle 
combines difficult, complex activities. Kimball [37] presents the whole DW life cycle 
starting from business requirements definition to the implementation phase including 
maintenance, evolution and project management. Designers tackle several challenges 
in all phases. Even so, there is no method addressing the cycle as a whole [53]. In the 
present study, we focused only on the design phase, including: the initial schema 
creation process (P-CRE which includes requirement representation, knowledge 
representation, source representation, conceptual design, logical design and physical 
design), the Knowledge-Requirements-Source mapping process (P-MAP), the 
Extract-Transform-Load generation (P-ETL) process, and the DW evolution 
processes (P-xEVs). The P-xEVs include the knowledge DW evolution (P-KEV), the 
requirement evolution (P-REV) and the source DW evolution (P-SEV). A detailed 
definition of each process is out of the scope of this paper. 

We evaluate each process (if it is taken into account by the method) according to 
the level of automation: fully automated, mostly automated, partially automated or 
not significantly automated. Some activities need user’s suggestions to generate a 
complete output like ontology annotations [68]. In some other cases, the designer’s 
input is required to approve algorithm propositions. For each level, we distinguished 
the type of automation: with or without parameterization and guidance. 
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Knowledge representation (K. Rep.). This criterion identifies the model used to 
represent domain knowledge. Also called model of meaning, it is a sound 
representation of domain entities and the relations between them [66]. 
Requirement representation (R. Rep.). This criterion identifies the model used to 
represent end user’s requirements. 
Source representation (S. Rep.). This criterion identifies the model used to represent 
a source (not to confuse with the source type). 
Source analysis (S. Ana.). Source analysis can be done on the structure (aka meta-
data, S), the data (D) or both (D-S). 
Multiple sources (Multi. S.). DW schema can be derived from multiple sources. This 
assumes that the method takes the integration of the data and the structure of the 
sources into account. 
Algorithms definition (Algo.). Authors published all required algorithms in a manner 
such that they can be implemented independently. 
Conceptual data model (CDM). A CDM aims at identifying and describing the 
concepts as they are understood by end-users; for further details, see DIV-1 models in 
[15]. The criterion is used to document the preferred model used by the method, if 
any. Typical values are Entity-Relationship model (ERM), Ontology model (OM), 
Dimensional-Fact model (DFM) [20], etc. 
Logical data model (LDM). A LDM aims at defining data requirements (as types, 
constraints, etc.) relative to a deductive framework (usually based on the first order 
logic) of a corresponding CDM; for further details, see DIV-2 models in [15]. The 
criterion is used to document the preferred models used by the method, if any. Typical 
values are the Relational model (RDT), the Star model (Star), the Tagged Graph 
Model (TGM), etc. 
Physical data model (PDM). A PDM aims at defining the representation (as data 
structures and access methods) of a corresponding LDM; for further details, see DIV-
3 models in [15]. The criterion is used to document the preferred mechanisms by 
which the method transforms its LDM in PDM, if any. Typical values are SQL (more 
precisely a RDBMS implementing the SQL language, such as Oracle or PostgreSQL), 
MOLAP, ROLAP, OBDW (like Onto DB [14]) etc. 
Temporal data model (TDM). This criterion specifies the temporal data model 
(BCDM [79], TRM [13], AV [30], etc.) used to design the DW schema (if any). 
DW type. This criterion specifies the DW type (Relational [9], Dimensional [37], 
Anchor [72], Data Vault [25], etc.) produced by the DWD process. 
Case study (Case). This criterion specifies if the papers present (refer to) well-
documented case studies. We have defined four classes (to provide an approximation 
of the case study implementation’s scale): 
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Table 1. Case study categories 

Classes Sources Relations Attributes Tuples 
Pedagogical example (PE) 1 3 12 1E+02 
Proof of concept (PC) 3 20 100 1E+04 
Scale test (ST) 8 1 000 10 000 1E+08 
Realistic test (RT) 50 10 000 100 000 1E+11 

 
The intended use is the following: PE for illustration purpose, PC for coverage 

demonstration, ST for evaluating practical performance at early stages, RT for 
benchmarking and road test before ongoing a real deployment effort. 

The complete list of criteria and their definitions can be found online at 
http://info.usherbrooke.ca/llavoie/projets/epiiramide/DWDMR 

Standard data sets. The case study benchmarks are based on publicly available data 
sets. 
Used tools and techniques. A descriptive criterion: the list of tools and techniques 
used to design the DW schema as reported by the authors. 
Complementary papers. A descriptive criterion: the list of other published materials 
used to extend the method. 

2.4 Literature selection process 

The literature review process is summarized in figure 1. Throughout the entire 
process, we retain only papers from year 2000 and up. At first, we targeted general 
methods (634 papers) with Google scholar, Summon 2.0 and Engineering Village 
using: "Data warehouse" AND ("design methodology" OR "design method"). We 
then targeted more clinical specific method with PubMed using: ("Data 
warehouse"[Title/Abstract]) AND (Design[Title/Abstract]); "Clinical data 
warehouse"; "Medical Data warehouse". 
 

 

Step 1 - Search 

Step 2 - Related articles

Step 4 - Sort Step 5 - Final

Step 3 - Merge 
Related papers

206

Google Scholar

17

Summon 2.0

149

Engineering 
Village

50

Included 
papers

582

Candidate 
papers

69

Evaluated 
papers

40

Pubmed

212
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Fig. 1. Selection process (February 2015) 

We then looked for citations and related papers of those found in the initial search 
with addition mostly related to [83] and [20]. Duplicates were then eliminated and we 
selected only journal and conference papers explicitly addressing data warehouse 
design methods. Papers related to XML DW, object-oriented DW, single data marts 
and standalone OLAP cubes were excluded, leaving sixty-nine candidate papers. The 
final group was chosen based on the inclusion of some automation (i.e. including 
some kind of potential automation for P-CRE, the creation process). When multiple 
papers referred to the same method, only one was retained. A total of 40 papers were 
then evaluated: [1, 6–8, 12, 18, 23, 24, 26, 28, 32, 33, 35, 36, 38, 42–44, 46, 48, 52, 
55, 56, 58, 59, 61, 63, 65, 68, 71–73, 75, 77, 80, 83–87]. 

3 Results compilation 

First, we present general observations based on our results compilation available on 
the public share [34]. The requirements defined earlier are then reviewed and 
assessed. A summary concludes the section. 

3.1 General observations 

Many methods use a hybrid approach (19/40), 6 among them including a knowledge 
approach. Since 2010, most methods representing requirements and/or knowledge use 
ontologies (12/18). Extraction for the source representation and data integration is still 
mostly manual. The relational model is the most common model to represent sources 
(8/40), although complete information on sources structural representation is rarely 
available. Only three methods report significant results based on multiple sources test 
cases. Dimensional modeling is widely used in DWD (26/40), but relational modeling 
is also quite present (8/40). If we restrict to temporal DWD, (5/8) are relational, (2/8) 
are dimensional and (1/8) is entity-attribute-value (EAV). We also notice that most 
authors don’t distinguish between conceptual and logical model and, when they do, 
they may be using different definitions form one to another. Ontology-based DW are 
an emerging solution to address data heterogeneity [3]. Few methods used standard 
data sets (6/40). 

3.2 Requirements 

R1 - Data integrity. Data integrity constraints may come from knowledge models 
(KM) or, occasionally, from the sources themselves (see R4). Moreover, integrity 
constraints are often encapsulated in applications (not in the database), thereby 
increasing the complexity of extraction and validation (even in source-driven 
approach). When they come from the KM, source analysis is required to cope with 
non-compliant data or non-compliant structure. Only 5 methods propose a hybrid 
approach including knowledge and source but no method proposes a dual source 



 

10 

analysis (structure and data) with explicit integrity verification and validation. Most 
methods give very few indications on constraints preservation and propagation by 
their algorithms. As it stands, R1 is addressed by some methods, but no rigorous 
evaluation has been presented to prove the algorithm efficiency in real scale 
problems, so R1 is only partially satisfied. 
R2 - Sound temporal schema design. Only 8 methods address the temporal modeling 
explicitly. One method provides temporal DW schema based on TRM model [13] 
while others use ad hoc models (5/40). None of these methods offer a significant 
automation level based on knowledge temporal constraints, source temporal structure 
and source temporal data. Interesting representations are given in [61] and [72]. As it 
stands, R2 is partially satisfied. 
R3 - Query expressiveness. No method addresses explicitly the issue of query 
expressiveness. Many of them seem to consider that views directly produced by DM 
design are adequate. In our experience, they may fulfill some of the managers’ needs, 
but are not adequate when end-users (e.g. care provider or researcher) must be able to 
query the DW themselves, using multiple and complex knowledge models. As it 
stands, R3 is not satisfied at the design step. 
R4 - Heterogeneous data integration. Data integration has received a large attention 
by the DW community over the last 30 years. Our hypothesis is that data integration 
must be guided by knowledge and part of the DWD design method. Only 5 methods 
explicitly cope with multiple sources and only 3 of them have a knowledge 
representation that can be used to arbitrate the heterogeneity. Only one of them 
addresses explicitly the ETL process, but more experiments based on a ST class case 
study are needed to conclude. As it stands, R4 is partially satisfied. 
R5A - Knowledge evolution integration. No method reports support of knowledge 
evolution integration. As it stands, R5A is not currently satisfied. 
R5B - Source evolution integration. Only 3 methods explicitly report support to 
source evolution integration. No clear indication of the ability to query retrospectively 
the sources based on a sound temporal model were found. As it stands, R5B is 
partially satisfied. 
R6 – Traceability. Methods [32] and [48] report a convincing traceability approach, at 
different granularity level, although they don’t address explicitly the knowledge 
representations’ changes. Unfortunately, none had linked their framework with a 
sound temporal model (which is required to obtain full query expressiveness, R3). 
Finally, more experiments based on a ST class case study are needed. As it stands, R6 
is quite fully satisfied. 
R7 – Guided automation. As expected, no methods are fully automatized, neither 
automatized at a level that will make our project feasible. Some methods perform 
quite well on discovering dimensional concepts in sources, guided by user 
suggestions, others, in generating ETL. Mixing best automation results (regardless of 
the compatibility of their methods) won’t even be sufficient for source/knowledge 
evolution processes at least. True guidance requires an easy walk-through between 
CDM and LDM that suppose a strong compatibility model (or identity) between 
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them, restricting again the ability to merge methods. Methods using model-driven 
architecture (MDA) approach can be largely automated (from requirements to 
physical schema generation) but they lack knowledge modeling. As it stands, R7 is 
partially satisfied. 

3.3 Compilation summary.  

Within the 40 evaluated methods, no method covers all the design life cycle. When a 
method shows a good level of compliance on one requirement: (1) supporting 
algorithms need further documentation to be independently implemented; (2) no 
evidence, based on an ST class case study, is given that the proposed methods may 
tackle large problems (only 2 methods report results on a PC class case study). 

We conclude that current papers do not satisfy significantly R1, R3 and R5A; 
partially satisfy R2, R4, R5B and R7; quite fully satisfy R6 in an integrated method. 

4 Discussion 

Building a DW, taking into account clinical data characteristics and satisfying the 
ensuing requirements, is a challenging issue. We will now discuss three fundamental 
elements, mainly related to requirements R1 to R5. 

 
Requirements R1 R2 R3 R4 R5A R5B R6 R7 
Not satisfied X   X   X     
Partially satisfied  X   X   X   X  
Mostly satisfied       X   

Table 2. Requirements evaluation summary 

4.1 Knowledge vs. Requirements 

Secondary use of data for analysis is essential to improve the quality of care and 
conduct optimal research activities. DW will serve many studies for different health 
fields and medical staff. Clinicians and researchers need to explore data to scope their 
study. At the beginning, requirements are not known or rarely exhaustive. Moreover, 
with the opportunity to easily access data, new needs will emerge and existing needs 
may change. Consequently, DW must contain all available data regardless the 
requirements that prevailed at initial DWD. Knowledge seems more useful than 
requirements to decipher source structure and isolate interesting data elements to 
extract. A recent paper [31] presents a semi-automatic guided method following 
hybrid requirement/source approach that covers all DWD life cycle. Using 
requirements for the DWD in health domain is unfeasible regarding the complexity 
and the diversity of end-users, as well as evolving needs. Moreover, knowledge 
encapsulated in applications (not in the database) is hardly addressed. Thus, following 
Inmon [27] architecture, we suggest building the DW using domain knowledge (K-S 
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approach) and then building specialized data marts using user requirements (R-S 
approach, S being the DW). To maximize reusability and extensibility, the “ideal” 
method should (1) take knowledge as the basis of the initial design, (2) “easily” 
integrate knowledge evolution and (3) be as “requirement neutral” as possible. 

4.2 Relational vs. dimensional 

By convention, most DW schema are based on dimensional design model (DDM, 
including stars and snowflakes variant), although no consensus on its formalism has 
been established yet [22]. Also, DDM design relies partly on non-consensual “best-
known practices”, some of them hardly automatable. Contrariwise relational design 
theory (RDT) is algorithmically well defined [9]. DDM is based on fact/dimension 
dichotomy which is not universal from a problem to another [55]. Furthermore, it 
relies on processes identification and on requirements that are unknown at DWD 
time. Even if the processes were all known at design time, DW schema will depend 
on them, thus any change in the processes may force a change on it. RDT is based on 
relations and integrity constraints (functional dependencies, referential constraints, 
temporal constraints, etc.) relying on domain knowledge and sound axioms. DDM 
schema evolution will be costly and may have a large impact on the whole DW 
schema. DDM can be used to define known, stable problems using a requirement-
driven method to address particular end user’s needs. RDT can be used to define large 
domains using knowledge-driven approach to ensure maximum consistency and 
integrity of data. 

Data integrity is critical when integrating a large number of data sources. 
Heterogeneous data integration is complicated by redundancy. Sound integration 
cannot be done without minimizing redundancy or adding (costly) constraints. RDT 
minimizes redundancy and guarantees data integrity on a sound and automatable 
basis. In light of the recent technology evolution, performance issues related to RDT 
play a much lesser role, if any. With vertical representation [39] and in-memory 
databases [41] at hand, performance may even be better with a RDT DW than with a 
(denormalized) DDM DW. 

4.3 Temporal model 

Temporal clinical data warehouses are acquiring increasing importance in the health 
field [2]. Time-based decision support in healthcare in needed to improve health 
quality. Reasoning with temporal data provides more accurate representations of the 
patients’ states and the events causing state changes. Temporal data is important, 
especially for specifying and detecting clinical phenotypes [64]. Accurate data are 
needed to ensure seemly results. In addition, a temporal sound schema plays an 
essential role in minimizing data incertitude, data indeterminacy and query 
expressiveness. Current temporal data models [13] and [79] relies on RDT to define 
design guidelines and constraints regarding temporal representations and constraints. 
Some methods rely on ad hoc models that might work with requirement driven 
methods, but carry limitations. In fact, when applied to a context where prospective 
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operations are not pre-defined, it becomes essential to have a temporal model which 
stands on its own, provides intrinsic computability soundness, and gives 
(automatable) provable transformation rules. 

5 Conclusion 

In 2006, Rizzi et al. [67] wrote: “Though a lot has been written about how data 
warehouse should be designed, there is no consensus on a design method yet”. This is 
still valid as none of the evaluated methods cover all the essential requirements, nor 
was tested in a large-scale implementation. 

We presented here a new set of requirements and criteria that can be used to 
evaluate such methods in the context of clinical DW. This set may be useful in other 
application domain as well. We also identified certain limitations. Without public 
standard data sets, it is difficult to measure method efficiency and progress regarding 
HD. The specification and creation of such a data set are essential to allow efficient 
development and evaluation of HD DWD methods. While we identified three 
characteristics essential for functional clinical DWD methods, others might emerge 
and would need to be added to the list. 

Another key conclusion of our study is that using domain knowledge is essential to 
improve relevant data selection and interpretation. It also fosters users’ autonomy as 
they can use data directly through the relevant knowledge representation instead of a 
requirement driven perspective. As a corollary, methods must tend to unify of source 
knowledge and domain knowledge, but the optimal knowledge representation method 
remains elusive at this point in time. In addition, the relational model and a sound 
temporal model are essential to simplify data queries and management (integrity and 
evolution). 

In conclusion, this review identifies existing gaps between requirements for a fully 
functional HD DW and existing methods to create one. A large number of 
independent solutions exist for several requirements, but none of the papers propose a 
comprehensive and integrated method for the DWD process compliant to the 
requirements of HD. 

In the end, this review enables us to turn our attention to the next step: evaluation 
of end products. Classifying them by design methods will allow us to focus on 
expected gaps and strengths as identified in this study. While further discussions 
regarding our framework will need to take place in the community to build consensus, 
we believe it can inform future development in the field. The challenge is to find a 
way to combine best existing compatible solutions to form an integrated design 
method with a high automation potential. 
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12	   [36]	   12	   R-‐S	   ma	   ma	   ??	   ??	   ??	   ??	   OM	   Goal	  Model	   none	   No	   Yes	   inc.	  
13	   [59]	   12	   K-‐R	   pg	   pa	   pa	   	   	   	   OM	   DL	  Exp.	   ??	   No	   Yes	   Yes	  
14	   [24]	   11	   K-‐S	   xx	   	   ??	   	   	   	   OM	   none	   EAV	   No	   ??	   n/a	  
15	   [71]	   11	   R-‐S	   mg	   ma	   pg	   	   	   	   none	   i*	  model	   OM	   S	   ??	   Yes	  
16	   [86]	   11	   S	   pa	   	   	   	   	   	   none	   Graph	   Graph	   S	   No	   No	  
17	   [7]	   10	   K	   n/a	   	   	   	   	   	   OM	   DFD	   ??	   ??	   ??	   No	  
18	   [8]	   10	   K-‐R-‐S	   ??	   	   	   	   	   	   OM	   ??	   ??	   ??	   ??	   No	  
19	   [58]	  	   10	   S	   xx	   ma	   	   	   	   	   OM	   none	   RDT	   S	   No	   inc.	  
20	   [68]	   10	   S	   mg	   	   	   	   	   	   OM	   Math.	  Exp.	   none	   ??	   No	   inc.	  
21	   [72]	   10	   R	   pg	   	   	   	   pg	   	   none	   ??	   ??	   No	   No	   No	  
22	   [87]	   10	   R-‐S	   pa	   ??	   	   	   	   	   none	   goalModel	   RDT	   S	   No	   No	  
23	   [42]	   09	   R	   xx	   	   	   	   	   	   none	   Text	   ??	   ??	   No	   No	  
24	   [43]	   09	   ?	   ??	   	   	   	   	   	   OM	   ??	   ??	   ??	   No	   No	  
25	   [6]	   08	   K-‐S	   xx	   	   	   	   	   	   OM	   ??	   ??	   ??	   No	   No	  
26	   [18]	   08	   R-‐S	   pg	   ??	   	   	   	   	   none	   i*	  model	   RDT	   ??	   ??	   No	  
27	   [73]	   08	   K-‐S	   xx	   	   	   	   	   	   none	   none	   Excel	  .cvs	   S	   No	   No	  
28	   [52]	   07	   R-‐S	   pg	   pg	   	   	   	   	   none	   MD-‐UML	   CWM	   S	   No	   No	  
29	   [75]	   07	   R	   xx	   xx	   xx	   	   	   	   none	   Text	   Report	   n/a	   ?	   No	  
30	   [80]	   07	   R-‐S	   pg	   	   	   	   	   	   none	   ??	   ??	   S	   No	   Yes	  
31	   [44]	   06	   R-‐S	   xx	   pg	   xx	   	   	   	   none	   UML	   UML	   ??	   No	   No	  
32	   [46]	   06	   R-‐S	   xx	   	   	   	   	   	   none	   MultiDimERM	   ??	   ??	   ??	   No	  
33	   [65]	   06	   R	   pg	   pg	   	   	   	   	   none	   UML	   ??	   ??	   No	   inc.	  
34	   [77]	   06	   S	   pg	   	   	   	   	   	   ??	   none	   ??	   S	   No	   No	  
35	   [28]	   04	   S	   ma	   	   	   	   	   	   none	   ??	   RDT	   S	   No	   Yes	  
36	   [1]	   03	   S	   pg	   	   pg	   	   	   	   none	   ??	   RDT	   S	   Yes	   No	  
37	   [85]	   03	   S	   xx	   xx	   	   	   	   	   none	   none	   RDT	   ??	   No	   No	  
38	   [63]	   02	   R-‐S	   pg	   	   	   	   	   	   none	   MDX	   ERM	   S	   No	   Yes	  
39	   [33]	   01	   S	   ??	   ??	   	   	   	   	   ??	   ??	   RDT	   Yes	   No	   No	  
40	   [26]	   00	   R	   xx	   	   	   	   	   	   none	   ??	   ERM	   S	   No	   No	  
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#	   #P	   Year	   CDM	   LDM	   PDM	   TDM	   DW	  type	   Case	   Data	  set	   Nb.	  	  S.	   Nb.	  Rel.	   Nb.	  Att.	   Nb.	  Tup.	  
1	   [32]	   14	   No	   Tagged	  Graph	   No	   No	   DM	   Yes	   LEARN-‐SQL	   3	   16	   ?	   ?	  
2	   [35]	   14	   OM	   RDT	   OBDW	   No	   DM	   Yes	   LUBM	   n/a	   n/a	   n/a	   n/a	  
3	   [38]	   14	   No	   Data	  Vault	   SQL	   No	   Data	  Vault	   Yes	   Ad	  Hoc	   1	   8	   44	   >1M	  
4	   [48]	   14	   MD-‐UML	   No	   No	   No	   DM	   Yes	   Ad	  Hoc	   1	   >100	   ??	   ??	  
5	   [55]	   14	   ??	   No	   No	   Ad	  Hoc	   DM	   Yes	   Ad	  Hoc	   ??	   ??	   ??	   ??	  
6	   [61]	   14	   TAG	   RDT	   SQL	   Ad	  Hoc	   RDT	   Yes	   Ad	  Hoc	   1	   4	   7	   ??	  
7	   [12]	   13	   MD-‐UML	   No	   No	   No	   DM	   Yes	   Ad	  Hoc	   ??	   ??	   ??	   ??	  
8	   [23]	   13	   DFM	   No	   No	   No	   DM	   Yes	   Ad	  Hoc	   4	   ??	   ??	   ??	  
9	   [83]	   13	   OM	   Star	   No	   No	   DM	   Yes	   EU-‐Car	   n/a	   n/a	   n/a	   n/a	  
10	   [56]	   12	   ERM	   RDT	   SQL	   No	   DM	   RC	   n/a	   ??	   ??	   ??	   ??	  
11	   [84]	   12	   exDFM	   RDT	   No	   No	   DM	   Yes	   Ad	  Hoc	   1	   8	   28	   ??	  
12	   [36]	   12	   OM	   Star	   OBDW	   No	   DM	   Yes	   EU-‐Car	   n/a	   n/a	   n/a	   n/a	  
13	   [59]	   12	   No	   No	   RDF	   No	   DM	   RC	   n/a	   1	   ??	   ??	   ??	  
14	   [24]	   11	   OM	   No	   RDF	   Ad	  Hoc	   EAV	   Yes	   Ad	  Hoc	   1	   ??	   ??	   >5000	  
15	   [71]	   11	   ??	   No	   No	   No	   DM	   Yes	   TPC-‐DS	   ??	   28	   ??	   ??	  
16	   [86]	   11	   No	   Star	   No	   No	   DM	   Yes	   Ad	  Hoc	   1	   16	   ??	   ??	  
17	   [7]	   10	   TempR	   RDT	   No	   TempR	   RDT	   Yes	   Ad	  Hoc	   ??	   ??	   ??	   ??	  
18	   [8]	   10	   ??	   ??	   SQL	   Yes	   RDT	   RC	   n/a	   ??	   ??	   ??	   ??	  
19	   [58]	  	   10	   ME/R	   No	   No	   No	   DM	   Yes	   Ad	  Hoc	   1	   7	   41	   ??	  
20	   [68]	   10	   No	   Constellation	   No	   No	   DM	   Yes	   EU-‐Car	   n/a	   n/a	   n/a	   n/a	  
21	   [72]	   10	   Anchor	   No	   SQL	   TRM	   Rel-‐Anchor	   Yes	   Ad	  Hoc	   1	   25	   25	   1M	  
22	   [87]	   10	   No	   Star	   SQL	   No	   DM	   No	   n/a	   n/a	   n/a	   n/a	   n/a	  
23	   [42]	   09	   ERM	   ??	   No	   No	   RDT	   RC	   n/a	   ??	   ??	   ??	   ??	  
24	   [43]	   09	   ??	   UML-‐Class	   RDF	   No	   ??	   inc.	   Ad	  Hoc	   ??	   ??	   ??	   ??	  
25	   [6]	   08	   ??	   No	   No	   No	   ??	   RC	   n/a	   ??	   ??	   ??	   ??	  
26	   [18]	   08	   DFM	   No	   No	   No	   DM	   RC	   n/a	   ??	   ??	   ??	   ??	  
27	   [73]	   08	   ??	   ??	   SQL	   No	   RDT	   inc.	   Ad	  Hoc	   ??	   ??	   ??	   ??	  
28	   [52]	   07	   ??	   RDT	   No	   No	   DM	   inc.	   Ad	  Hoc	   ??	   6	   22	   ??	  
29	   [75]	   07	   ??	   ??	   ??	   No	   ??	   RC	   n/a	   ??	   ??	   ??	   ??	  
30	   [80]	   07	   No	   Star	   No	   No	   DM	   inc.	   Ad	  Hoc	   ??	   ??	   ??	   ??	  
31	   [44]	   06	   MD-‐UML	   No	   UML	   No	   DM	   Yes	   Ad	  Hoc	   1	   ??	   ??	   ??	  
32	   [46]	   06	   ERM	   No	   No	   Ad	  Hoc	   DM	   Yes	   Ad	  Hoc	   1	   3	   15	   ??	  
33	   [65]	   06	   UML	   UMD	   MOLAP	   No	   DM	   Yes	   Ad	  Hoc	   1	   20	   28	   ??	  
34	   [77]	   06	   DFM	   No	   No	   No	   DM	   Yes	   Ad	  Hoc	   1	   7	   16	   ??	  
35	   [28]	   04	   No	   Snowflake	   No	   No	   DM	   No	   Ad	  Hoc	   n/a	   n/a	   n/a	   n/a	  
36	   [1]	   03	   No	   No	   ??	   Ad	  Hoc	   RDT	   No	   n/a	   n/a	   n/a	   n/a	   n/a	  
37	   [85]	   03	   ??	   ??	   SQL	   No	   RDT	   RC	   n/a	   13	   600	   ?	   >32M	  
38	   [63]	   02	   ME/R	   No	   No	   No	   DM	   inc.	   TPC-‐H	   ??	   ??	   ??	   ??	  
39	   [33]	   01	   ??	   ??	   ??	   No	   ??	   No	   n/a	   n/a	   n/a	   n/a	   n/a	  
40	   [26]	   00	   ??	   ??	   ??	   No	   DM	   inc.	   Ad	  Hoc	   1	   6	   18	   ??	  
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Caption 

Annotations  
n/a  non applicable 
pg partially automated with guidance required; 
pa partially automated  (with or without parameterization); 
xx not significantly automated; 
mg mostly automated with guidance required; 
ma mostly automated  (with or without parameterization); 
?? information not explicit 
inc. incomplete description  
fg fully automated with guidance required; 
fa fully automated (with or without parameterization; guidance may be 

available but not required); 
 
Crietria Acronyms 
P# Paper number 
D. App. Design Approach 
P-CRE Creation process 
P-MAP Mapping process 
P-ETL Extract-Load-Transform process 
P-KEV Knowledge evolution process 
P-REV Requirement evolution process 
P-SEV Source evoluation process 
K. Rep. Knowledge representation 
R. Rep Requirement representation 
S. Rep. Source representation 
S. Ana. Source analysis 
Multi. S. Multiple source 
Algo. Algorithme 
CDM Conceptual design model 
LDM Logical design model 
PDM Physical design model 
TDM Temporal design model 
DW type Data warehouse type 
Case Case study 
Nb. S. Case study Source count 
Nb. Rel.   Case study Relation count  
Nb. Att. Case study Attribute count 
Nb. Tup. Case study Tuple count 
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Value Acronyms 
BMM Business Motivation Model 
CWM Common Warehouse Metamode 
DFD Data Flow Diagram 
DL exp Description Logic expression 
DFM Dimensional Fact Model 
DM Dimensional Model 
EAV Entity-Attribut-Value 
ERM Entity-Relationship Model 
GEM Generating ETL and Multidimensional designs 
ME/R Multidimensional Entity-Relationship 
MDX Multidimensional Expressions (MDX queries) 
OCL Object Constraint Language (OMG) 
ODMG  ODMG object data model 
OBDW OM based date warehouse 
OBDB OM-based Database 
OM Ontology Model 
RDT Relational Design Theory 
TAG Temporal Attribut Graph 
TMD  Temporal Multidimentional Model 
TRM Temporal Relational Model 
MD-UML UML Profile for multidimensional modeling  [Luján-Mora et al. 2006] 
UMD Unified Multidimensional Model 
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